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SIMILARITY PARAMETERS FOR RADIATIVE ENERGY TRANSFER
*
IN ISOTHERMAL AND NON-ISOTHERMAL GAS MIXTURES

by

S. S. Penner.T M. Thomas?’ and G, Adomeit™""

Karman Laboratory of Fluid Mechanice and Jet Propulsion
Daniel and Florence Guggenheim Jet Propulsion Center
California Institute of Technology

Pasadena, California

ABSTRACT

The similarity groups for multicomponent, reacting
gas mixtures with radiative energy transport are derived
(Section I), The resulting relations are used to consider
the feasibility of scaling for flow processes with radiative
energy transport under highly simplified conditions
(Sections II and III). Next the scaling parameters are
derived for radiant energy emission from isobaric and
isothermal gases for arbitrary opacities and various
spectral line and molecular band models (Section 1V),
Scaling parameters for radiant energy emission from
isobaric but non-isothermal systems are discussed for
arbitrary opacities and various spectral line and molecular
band models under the restrictions imposed on the allowed
temperature profiles for dispersion and Doppler lines by
the Eddington-Barbier approximation (Section V). Finally,
we consider the radiative scaling properties for represen-
tative temperature profiles for both collision-broadened
and Doppler-broadened line profiles on the basis of exact
numerical calculations that we have performed for a
rotational spectral line belonging to a molecular vibration-
rotation band (Section VI), It appears that simple scaling
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rules generally constitute a fair approximation for
dispersion lines in non-isothermal systems but that
corresponding relations apply to lines with Doppler
contour only in the transparent gas regime,

I. DETERMINATION OF SIMILARITY PARAMETERS

The techniques for identifying the similarity groups for systems
described by a set of conservation equations are well known and have
been developed in detail previously for reacting, multicomponent gas
mixturea.l Although the particular form of the conservation equations
used in the original analysis has been shown to be in error in several
respects,?"3 the resulting similarity groups are unchanged if the same
approximations are used as in the original article.l Some generali-
zation of procedure can be made without difficulty by following the method
described below [Eqs. (4) and (6) are not given in ref. 1} .

We start with the set of conservation equations [see Egs. (12),
(13), (16) to (18), and (23) in Chapter XVIII of I] : next we use a binary
mixture approximation for each of the diffusion velocities [using Eq. (4)
on p. 243 of I, replace the subscriptl by K (K=1,2,...n) for an n-

_
component mixture, replace Yz by 1-YK and WZ by W = average molecular

1 S.S. Penner, Combustion Researches and Reviews 1955, pp. 140-162,

Butterworths Scientific Publications, lLondon 1956.

2 For a derivation of the relevant equations from continuum theory, see
W. Nachbar, F.A. Williams and S.S. Penner, Quart. Appl. Math. 17,

43 (1959).

3 The correct results are also givea by S.S. Penner, Chemistr
Problems in Jet Propulsion, Pergamon Press, Ltd., London 1957.
This book will be referred to as I hereafter.
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weight of the fluid mixture remaining without species K] ; finally we
write the cc’)m’pl.cte heat flix vector [lee Eq. (23) on p. 239 of I] in the

form4
q:=- [M Ach] vT.

Here A is the thermal conductivity associated with molecular collisions
and A‘;h identifies the thermal conductivity associated with chemical

reaction; Ach is given explicitly by the exprellion4

L 2 ax.,,
A =Z Z <) _p_ w_H K
ch 3 KK'W"K'"K ~dT
K=l K'sl

where {c) = total number of moles per unit volume of mixture, p= fluid

density, DKK'

function of the binary diffusion coefficients and the mixture composition, 3

= multicomponent diffusion coefficient which is a known

WK,= molecular weight of species K', HK

XK, = mole fraction of species K', T = temperature.

= molar enthalpy of species K,

Using the specified starting relations and standard proce(lv.u'el,l
we find the following set of similarity parameters for multicomponent,
reacting gas mixtures without radiative energy transport if the subscript
o identifies suitably chosen reference conditions:

Yo = ratio of specific heat at constant pressure ('c:'p o) to the (1)
specific heat at constant volume (Ev o) for the fluid
14

mixture,

47.0. Hirschfelder, University of Wisconsin Report WIS-ONR -18,

February 6, 1956; J.N. Butler and R.S. Brokaw, J. Chem. Phys. 26,
1636 (1957).

5 J.O. Hirschfelder, C.F. Curtiss and R.B. Bird, Molecular Theor
of Gases and Liquids, John Wiley and Sons, Inc., New York 1954,
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Reynolds numbers = Pei = v L'/'“o (p = density, v = flow (2)

o001

velocity, L, = ith characteristic length, 4 = mixture

viscosity; i =1,2,... ),

Schmidt numbers = ScK = /to/ foDK,o (DK 0= diffusion {3)

coefficients for species K; K =1,2,...n),

Sc

k = thermal diffusion ratio for (4)

]
K' = Ao/Po5TK, 0Pk, 0 *TK

species K, D = k D = thermal diffusion

TK,o~ TK,o K,o

coefficient for species K),

Prandtl number 8 Pr = ¢c_ A& /A _, (5)
p,o’0o "o
Pr'= Ep’ o#o/ Ach, o (this group will actually remain invariant (6)
. o
if the groups Pr, ScK and DlII.i,r are {ixed),
2
Mach number = M = Po¥o /l’op0 (p = pressure), (7)
2
Froude numbers = v, /gLi (g = gravitational acceleration), (8)

Damkghler's first similarity groups

(U,

’

/v (9)

=D . =L.U
I,i,r ir,o o

= characteristic reaction frequency for the rth

chemical process; r =1,2,...m),

Damkohler's third similarity groups = DIII T qr'U L./ve T

(qr' = heat release per unit mass in the rth chemical reaction),

1
§=2'vo

2

r,0 i o p,0 o
(10)
/(Ep.o“'o)To . (11)

6

A. Radiative Energy Transport in the Diffusion Approximation

Throughout the following discussion we neglect photochemical

° For an elementary discussion of the basic equations, see S.S. Penner
and R. W. Patch, "Radiative Transfer Studies and Opacity Calculations
for Heated Gases', Technical Report No. 6, Contract AF 49(638)-984,
California Institute of Technology, Pasadena, Calif., January 1962; in
press in Papers Presented in Honor of Modesto Panetti, Politecnico di
Torino, Accademia Nazionale dei Lincei, Rome, Ttaly, 1962.
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reactions. In the diffusion approximation, the effective thermal

conductivity is augmented by the term Ara where

3, .-
A =16 €T /3K, o,

¢ = Stefan-Boltzmann constant and k = Rosseland mean absorption

L,Ro
coefficient. Hence an additional analogue of the Prandtl number will

appear, viz.,
*

Pro=c, JA/A . - (12)

In the momentum equation, an additional body force per unit
volume
3
T, =-166T /3c)0T
appears, where ¢ = velocity of light. This body force per unit volume
may be considered as an additive term to the pressure gradient, i.e.,
the fluid pressure is replaced by the sum of the fluid and radiation
pressures. Thus a new similarity group may be formed which
measures essentially the ratio of these pressures. It may be written as
et 4 2 et e
o = £ r MZ =]
3cp° 3 o (l v Z) )
Z Po%
The ratio of the radiant energy density for a blackbody at the reference
temperature To (=4°’T°4/c) to the translational energy density under
reference conditions (=f°v°2/2) we designate as the similarity group
_ et t/e)
T, (13)
fo¥o /2

The preceding considerations indicate that, in the diffusion

approximations, allowance for radiative energy transfer leads to the



-6-

requirement that an addiiional analogue to the Prandt! number [ see
Eq. (12)] and the similarity group “1 be considered. The reciprocal

of the Rosseland mean absorption coefficient is the Rosseland mean

free path lRo and is defined by the relation

-

- 4 x
I -x )'1=L5_f 1 Xe _dx, x=3¢,
Ro L,Ro i kL.V, T (ex_l)Z kT

where kL, v, T identifies the linear absorption coefficient in the
frequency interval between # and + + dv at the temperature T. Thus
constancy of the similarity group I“r.l imposes severe restrictions on

the allowed values of kL,v T although it is not required that the products
of the linear spectral absorption coefficients and characteristic lengths

be maintained invariant, as is necessary for radiative transfer problems

for arbitrary opacities (see Section IC) in isothermal systems.

B. Radiative Energy Transport for Transparent Gases

The radiation pressure for transparent gases without external
source is negligibly small, For isothermal systems, the energy loss

from unit volume by radiation il6

-
v. Fra = 4rT4;L,Pl

where :L Pl is the Planck mean absorption coefficient which equals
-
the spectral emissivity per unit length, The term ©, Fru occurs as
an additional term to the internal energy flow rate per unit volume
-
gv. vu
where u represents the specific internal energy. Hence we may

construct the ratio



-7-

4 .4

sert kP ey | o kPl (T )k pr-
- = o %, % *
pv.vu Poop.oo P v .vu

where the starred quantities are dimensionless. The parameters

4
T 'k L, - .
PiE o L,Pl,oi (14)

Fv? T
00 p,0 0

measure the ratio of radiative energy loss from the system per unit
surface area to the free stream rate of enthalpy transport per unit
area., The parameter I"i plays an important role in problems on
stellar turbulence.7

Other important similarity groups in flows with radiant

energy transfer are the Bouguer numbers

Bug i® kL v, 1,014 (15)
or
Bup, ; =K p1, ol (15a)
or
Bugo,i = KL, Roli (15b)
and the Boltzmann number
e’
Bo = ~ . (16)
f v ¢
00 p,o0

The Boltzmann number is seen to arise from the similarity group [ i

by dividing this quantity by the ith Bouguer number Bup1 i

T A. Unsold, Physik der Sternatmospharen, Julius Springer, Berlin 1958,




-8-

. *
C. Radiative Energy Transport for Arbitrary Opacities

When neither the diffusion approximation nor the transparent
gas approximation are applicable, proper allowance for radiative energy
transport becomes particularly difficult since local radiant energy
contributions are determined by inté rals over the accessible field of
view, Neglecting photochemical processes, it appears now that
complete simulation is possible, even for isothermal systems, only
if a set of similarity g. ohpl involving the parameters B“v.i remains
invariant for all important lengths L, at all frequencies ¥ . For non-
isothermal systems, the problem becomes complicated still further
because simulation now requires invariance of similarity groups
involving the spectral radiant flux per unit solid angle at x, with the
solid angle measured (see Fig. 1) in the direction (;Z -?l)/ I §Z -§1 | ,

i,e., along C, viz,,

X,
[R:(;z)][kL'v'T('fz)] exp-f [kL'v'T(;)] dx b dx,
% c

Xl'c Xl'

where the symbol C indicates that integration is to be performed
along the path defined by a straight line drawn between the ends of
(initially chosen) vectors x, and X, Here the scalar spectral black-

body radiancy R: ° and the scalar linear spectral absorption coefficients

are, in general, complicated functions of the spacial location.

* This important problem is considered in detail in Section IV for iso-
thermal emitters and in Section V for non-isothermal systems.
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Fig. 1. Schematic diagram showing the definitions of
- @
11. X, X, and C

I1. SCALING OF FLOW WITH MAINTENANCE OF CONSTANT VALUES

OF D AND l'i FOR TRANSPARENT GASES

Li,r
An interesting special case, which is of some practical

importance, involves the scaling of reactive gas flows for a given

chemical system in such a way that the reference temperaturse, velocity

and specific heats are invariant,

Let us identify by the subscripts H and Mo a large-scale burner

and the model, respectively. It follows then from Eqs. (9) and (14) that

LL;HUr. oH _ Li;Mon-, o;Mo

Vo;H vo;Mo

and

3
cTo;Mo FL. Pl, o;MoLl;Mo

3
TTon XL, PLioMuH
fo;Mo"o;Mo?p. o;Mo

fo;Hvo;HCp. o;H
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Let
_ no:H

n (17)
1 no:Mo

denote the scaling parameter for the physical variable 7 .. Furthermc;re.
let us consider two propellant st reams that are injected at the same
reference conditions with

- n =n. =n. =1,

The specified requirements for similarity now reduce to the relations

nL.'nU =1 - (18)
i r
and
n n, =n (19)
L-fp
r‘.1..191 !
Since Gr-l
n, « nr (20)
r

if 9: represents the overall order of the rth chemical process, we may

rewrite Eq. (18) in the form

n =n ¥ . (Zl)

Therefore, the similarity groups D " will remain invariant if model

I.i,
tests are performed on small-scale engines at elevated density since Gr

will generally be larger than unity, For example, for second-order

processes (6r=2), n, =10 if the model tests are performed on a scaled-
i
down burner in which all lengths have been reduced by a factor of 10, At
1-6

the same time, n’ T nr'l= 10 if nr= 10-1. i.e., if model tests have

been carried out at densities ten times larger than those which are of

interest for the full-scale device.
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Combining Eqs. (19) and (21) we find that

whence it follows that simultaneous similarity with respect to the groups

D and l"i can be maintained only for first-order processes since

Li,r
we expect, in general, thatn < n, . To summarize, it is not

L,Pl
possible to maintain simultaneously similarity in model tests and in

large-scale burners with respect to the important similarity groups
DI ir and Fi except in the unrealistic case that the effective, overall
L ]

reaction order is unity.

III SCALING OF FLOW WITH MAINTENANCE OF CONSTANT VALUES

OF D R AND Bupl i FOR TRANSPARENT GASES

Li,
The scaling procedures discussed in the preceding Section II
were designed to assure similarity of chemical reaction profiles and of
radiative energy loss rate per unit area relative to the convective energy
transport rate per unit area. Thus they were designed to maintain the
flow field in a reacting system invariant under the influence of radiant
energy loss.

For some applications it may be more important to require
invariance of the chemical composition profile and of the absolute value
of the radiant energy emission rate per unit area of reaction front since
the occurrence of radiant energy loss generally constitutes only a amall

perturbation on the flow field. In this case, it is pertinent to demand

invariance of the Bouguer numbers B“pl ; as well as of D

, I,i, r’
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In order to assure invariance of Bup1 ir e impose the condition

k L k

L,Pl,0:HY:H™ %L, P1, 0:Mo i Mo

or .
n n, =1, (22)
L.
E1..191 !
Equations (18) and (21) apply as before for nv=l. If we combine Eqs. (21)

and (22) we obtain the result

i.e., the condition

EL.F’l

is now only satisfied for effective, overall, second-order processes.
To summarize, simultaneous invariance of the similarity groups DI ir

and BuPl,i is possible only for the important case of second-order,
overall rate processes. For this case, the groups Rei and M are also
maintained invariant for a given combustible mixture.

The foregoing considerations lead to the important conclusion
that significant model testing of the radiative properties of reacting gas
flows is possible for those cases in which radiant energy emission does
not produce significant perturbations in the flow field (e.g., transparent
gases) provided we are satisfied in scaling the radiative properties per
unit area of reacting mixture. The correlated changes in geometrical

specifications (Li) and operating density (P ) are determined through

Eq. (21) for nv = ncpz nT =1,
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IV. SCALING PARAMETERS FOR RADIANT ENERGY EMISSION FROM
ISOBARIC AND ISOTHERMAL SYSTEMS FOR ARBITRARY OPACITIES
AND VARIOUS SPECTRAL LINE AND MOLECULAE BAND MODELS

For isothermal systems at the temperature T, the emitted
steradiancy may be calculated from the equation

B(T) = %fR:[l-exp(-PwX)] dw .

The results of these calculations are summarized in Table 1a for selected
spectral line shapes and in Table 1b for selected vibration-rotation band
models,

From the data listed in Tables la and i1b, we may draw the
following important conclusions:

1. For transparent gases, the steradiancy is directly proportional
to p L irrespective of the spectral line contour or of the band
model,

2. The important scaling parameter is p L at all optical depths for
isolated Doppler -broadened lines, and for all band models in
which the spectral line structure is effectively smeared out,

3. The steradiancy is proportional to V fZL at moderate to
large optical depths (a) for isolated, collision-broadened
lines, (b) for isolated lines with combined collision and
Doppler broadening falling in the ''square-root region' of
the curves of growth. Also for statistical distributions of
the lines described under (a) and (b) sz is the -

important scaling parameter.
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V. SCALING PARAMETERS FOR RADIANT ENERGY EMISSION
FROM ISOBARIC BUT NON-ISOTHERMAL SYSTEMS FOR
ARBITRARY OPACITIES AND VARIOUS SPECTRAL LINE
AND MOLECULAR BAND MODELS '

One of the classical approaches to the theoretical calculation
of radiant energy emission from non-isothermal systems is exemplified
by the Lundblad series development for the solar photouphere.7

The spectral steradiancy at the frequency v and at the optical
depth T, =0, corresponding to the geometrical length s = 0, in the

direction @' (see Fig. 2), is given by the relation

o
BM0.0’):[ Bv"(r,){exp[-r, lecO']} (sec0')dT,,

0
[e o] [

=f B:(l){exp[-f kL’V(u)d-']}kL'V(l)fil (23)
0 0

where Bvo is the blackbody steradiancy for local thermodynamic

')ds' corresponding

)
equilibrium at the optical depth T, =cos O'f kL o(s
o .

to the geometric length s, along the beam of the emitting system, for
a spectral linear absorption coefficient k , = kL e
1f B:( T,) is developed in a (Lundblad) power series in 't’v ,

viz.,

[0 o]
B2(7,) =Z art, (24)
i=0
then
o o] [e o] (s o]
i i -y ‘y iy,
B,,(0,0') =Z 2, cos'! f ye Ydy = Z 2,it cos’o (25)
0 0 0

where the substitution y=T7,,secQ' has been used. Comparison of Eqs. (24)
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I’/ ///////////////}fo

-]
}(; k,ds'=t, /cos '

Fig, 2 Schematic diagram showing the geometric
configuration discussed in the text,
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and (25) shows that

o .
B,(0,0") = B‘V(T’(’v =cos@’

) for a,=0 ifi 2 2, (26)
i.e,, if only the first two terms are used (Eddington-Barbier approxi-
mation) in the power series given in Eq. (24). The physical interpre-
tation of Eq. (26) is the following: the spectral steradiancy at T, =0,
observed at an angle 0', for a non-isothermal system is identically
equal to the numerical value of the spectral blackbody steradiancy

o
B (T,

-conO') at the optical depth T,, =cos0Q' or at the geometrical
L s

*
length defined by f kL wd" =1, provided only two terms are used in
o L]
the power series expansion shown in Eq. (24).
It is interesting to consider the possible temperature profiles

for selected spectral line shapes that are consistent with the statements

'
B:( ’('V) = aqt "171/= ant alcow' f kv(l')dl'
0
s
o o ' '
=B_(0)+ [BVO(TrV :coaO')-BV(o):lj k,(s')ds (27)

0

and
s

[ kv(l')dl' =1, (28)

We assume a monotone variation of T and Tv with s (and thus also of
T,, with T) and we impose the boundary condition T=T° at T, =8=0,

Differentiation of Eq. (27) with respect to T yields the differential equation

3
Note that s is measured along the direction 9' shown in Fig. 2.
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dB ° 2 4

. ds _ 1 ¥ 1 2h’w 1 exp(hv/kT)
(cos®M, Mg =3 Tr "3] “ T 2 [exp(hv/kT)-l]z (29

It is now possible to specify kv(T) for various spectral line profiles
belonging to various assumed atomic or molecular emitters. We may
then integrate Eq. (29) in order to find s as a function of T. Finally,
Eq. (28) may be used to obtain the proper value of s, and hence of T,
for which B,,(0,0') = B_(T for {' k_(8')de'=1).

In the analysis presented in Eqs. (23) to (29), it has been

assumed that the quantities a, are independent of 7, . For an emitting

1 v

system with structure, this statement can be true only spectrally, i.e.,
a different value of a, must be chosen at a different frequency for any

specified temperature dependence on geometrical length. The implications

of this fact may be clarified by referring to the schematic diagram shown
in Fig. 3. The temperature profile must, of course, be independent of
frequency in any physically meaningful problem. However, the physical
location s and the temperature T at which Eq. (28) is satisfied is
strongly dependent on frequency. In the near line wing at the frequency
V0+ a Vl' the integral condition of Eq. (28) will be met for small values
of s and T; on the other hand, in the far wings of spectral lines where
v=v0+A Y much larger values of s, and hence of T, are required
(compare Fig. 3). In other words, the contributions to B_,(0,0')
calculated according to Eq. (26) arise from regions of different
temperature at different locations for different frequencies in sucha
way that the far line wings will make relatively larger contributions
since they may be "'seen'' at greater geometrical depths and,

correspondingly, at higher temperatures.
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(s,T) at Yo+ Ay, for

S {: ky(s')ds'=I -\

(s,T) at 16+Av' for
S
[ kyls)ds'=1
(o)

r—————-————_—

Fig. 3. Schematic diagram showing the relation bet\n'reen tempera-
ture T and distance s for a specified angle 0 . The values
of s and T required to satisfy Eq. (28) are shown for the
representative frequencies vo t Avl in the near wing and
v + Ov, in the far wing of a line.
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Since a, may vary with frequency, it will prove to be convenient
to introduce a frequency dependence for 8 deliberately in such a way as
to allow a universal representation of a reduced distance variable

(which is a function of + ) as a function of T,

A. Ilsolated Spectral Lines Belonging to Diatomic Emitters with Collision
Broadening

For local thermodynamic equilibrium, we find for diatomic

emitters, to the harmonic-oscillator and rigid-rotator approximation,

the following relation for collision broadening:

3/2
2 o T
ky= 7 Ay %(ﬁ‘)r"( "13) [1-expt-u, T /T 1-expt-ho kT
8 v ° o/ "o

x [ exp(-E, /xT)] [H[(v-vo)zl(bozTo/T)]}-l. (30)
Here Yo is the frequency at the center of the emitted spectral line:
Au-l is the Einstein coefficient for spontaneous emission for the
transition producing the given spectral line; g is the statistical weight
of the upper energy level involved in the transition; p/kTo represents the
number of molecules per unit volume at the pressure p and at the
reference temperature T, with k denoting the Boltzmann constant;
<T'°=th/kT° where B is the appropriate rotational constant for the rigid
rotator; bo is the spectral line semi-half-width at the pressure p and
at the reference temperature To and we have assumed that b=bom
at the constant pressure p; u°=hve/kT° where Ye represents the normal
vibration frequency of the diatomic molecule (harmonic oscillator);

E, = energy of the lower state above the zero-point energy.

L
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From Eqs. (29) and (30) we obtain the following differential

equation [after approximating v in Eq. (29) by Vo:] :
1

2
s ot EE(L,-)T exp(-hvolk'r) exp(Ez/kT) [1+ (v-yo) }d'r
cos?' a, T [l-exp(-hvo/k'r)]3 [l-exp(-uoTO/T)] boz(TolT)
(31)
where 6
A4 = lbwzhz tzg 1Jo (32)
Mk P T A
oo %uu-l

1. The Limiting Case hvo/k'r << 1, uoTO/T <«<1, (h vo-Ez )/ kT <<1

For hv_/kT<<1, u T /T<<l, (k¥ -E,)/kT<<1, Eq. (31)

becomes, after integration between the limits 8=0 at ’I'=T° ands, T,

] )
.z —Tc“:f. - (T9/Z-T°9/z)+c——-°-§. ,('r”/z-'ro”/z). (33)
where
A= 2 ""(bo/"l)
9w (hv /xT )T 1/*
(] o] [¢] [+
(34)
) A b /) (w-v 2
. @ 'z — ° 2 .
11 “o‘h"o/“T)sTom B,

2. The Limiting Case hv /kT > 1, uoTO/T >>1

For hvolk'r > 1, uoTO/T >>1, and with 2 = (hvo'Eb /kT,

Eq. (31) becomes 1

2
b hv -E
o4 o [ L) z-3/2e-z[l+
; Io

0¥ - 8T 3, o ) .

Vv, hyo‘EL 1
—r—) ——ET-—— z de. (35)
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Integrating again from s=0 at T=T _ and z=z = (hVO-El)/kTo to s, z,

we find now that

1 3
z 2
b hV 'E b hV -E Y -y
e~ o o £ o o " o
(cotO )l = b“ 8_ TO( _FT—) Il+ ‘4 TO l— kT 1 IZ (36)
1 o 1 o o
where
z 2
I = -f z.s/ze'zdz, IZ = -[ z°5/ze°zdz. (37)
z z
o o

In order to evaluate Il and IZ' it is convenient to write the identity

z
[+

z z
-I 2 "e " %dz = -f 2 e %ds +[ z "¢ %dz for n =% or 52—. (38)
z @® ©

where the second integral appearing on the right-hand side of Eq. (38)

is negligibly small compared to the first for z much larger than z. But

-fz IS V2 TR S 2o r‘(%) (39)
J V= P e

where [ (i—) is the complete gamma function of argument% and r‘z( l2—)
is the incomplete gamma function of z of argument 21- . 8 Making use of
the notation of Pearson, 8 the preceding expression may be rewritten in

the form
z

f z'3/Ze'zdz=Z{ J_; - ﬁ"[x-x( \/:_.5, os)]} (40)

@

With the available tables of the incomplete I -fv.mcl:ion.8 which gives

values to seven significant figures, Eq. (40) can only be evaluated for

K. Pearson, Tables of the Incomplete [ -Function, Cambridge
University Press, Cambridge, 16’57.
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2 <9. Forz >9, the integrals may be evaluated either numerically or
else by using a simple approximation procedure.
Integrating by parts twice yields the expression

-f 2 % %dz = 2 "e %+ %[ z e %dz + -22- (I z'ne'zdz> dz. (41)
z

@ [+ 2] (o ] @

For sufficiently large values of z, Eq. (41) reduces to

-n_-z
-f 2 e %dz ~ W:vm— (42)

a

or, in somewhat cruder approximation,

-[ z e %dz x 2%, (43)
®

Results obtained by using Eqs. (42) and (43), and also by using
Eq. (40) together with tabulated values of the incomplete gamma function.s
are plotted in Figs. 4a and 4b. These data, together with Eqs. (36), (37)
and (38) yield the desired temperature profile. For hVO/kT << 1, the
dependence of T on s is easily computed by using Eq. (33).

Reference to Eqs. (33) and (36) shows that the temperature profile
depends on the frequency. At the line center, however, @' 0. Therefore
s may be computed as a universal function of T for huolkTo<< 1,
Similarly, for hVo/kTo >>1, the second term in Eq. (36) vanishes and

(coso') o/{o‘-(bolaI)To[(hvo-El )/kro]”z} = 1,, which has been plotted
in Figs. 4a and 4b for the special cases z = @ and z,= 20: in Figs. 5a to

5¢c, the corresponding temperature profiles are shown for z, = 20,

o
Ty= 300K,
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Fig. 5a. A plot of the first approximation to I1 [see Eq. (43)] as a

function of T and = (for z_ = 20, T = 300°K, E

4

= 0),
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Fig. 5b. A plot of the first approximation to I, [see Eq. (43)] as a function

of T and z (for 2, =20, T, = 300°K, EL =z 0). The contribution

-2
of the term e °z°'3/z tq 1, is negligibly small,
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Fig. 5c. A plot of the first approximation to Il [see Eq. (43)] as a function

of T and z (for z, =20, T, = 300 K, E, = 0). The contribution

-2
of the terme ° zo-slzto I,is negligibly small.
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In the line wings, the first terms of Eqs. (33) and (36) become
negligibly small., Hence reduced temperature profiles are again determined

in terms of easily computed quantities or in terms of IZ'

3. Determination of Steradiancy B(0, 0) for hvo/kTo >>1, uoTo/T >>1

If a temperature profile is specified which differs from I‘ or I2
by at most a constant factor, then the steradiancy B(0, 0) may be calculated
for suitable frequency regions. From Eq. (26) it is apparent that

[o o]

o
B(0,0) J B (Tr coso)d” (44)

where BVO(TT ) is the blackbody steradiancy at that location where
v

=cos@’

Ty /cosQ' =1, According to Eq. (27),
a ={BJ(T ) -B(T_) | / cos@' (45)
1 v Ty zcos@' Y 'o :

Let us consider the temperature profile (cos9') '=Llll' where the
characteristic length L1 is a constant, Close to the line center, Eqs.

(36) and (45) lead to the relation

1
h, -E, \Z
o ) _ A Yo T4 ,
BV(TTV =c0l9') 'BV(TO)' _LT bo(_FT_o— T, cosd' . (46)

Next we introduce Eq. (46) into Eq. (44) and integrate from vo- A Y. to
¥ o, where A Ye is sufficiently small to justify use of the first term
only in Eq. (36). In this manner we obtain

1
vtav AT by -EL 3
(—%T-—) 4 v, cosd', (47)

0 o
Bv (T‘l'u -.-couO')dV =2 El t’o o

Yo" A%
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where B:(To) has been neglected.* The contribution of the term in

Eq. (38), which has been neglected in Eq. (47), is close to (A volbo)z.
Let us now consider a temperature profile (cosé') s=LZIz

and investigate only the contribution of the wings in Eq. (36). Then,

proceeding as before,

w

_/ v 2
A_ hv -E Zr - \
B"'O(TTV =cou°') =T, boTo :T £ !\ b - cosd' + B3('1‘0)‘ (48)
, 2 o/ o )/

Introducing Eq. (48) into Eq. (44), we obtain the following integral

u
QAR A hy -E %
o 2 2 o ¢
: f PviTe, ccos019¥= T Po To| —Rer, | coo¥
v°+AVw
u
Ay /b 2
x vev \ v-vo\
d . (49)
Ay, /b \ b, / bo/

where B:(To) has been neglected. The integration limit towards the line
center, v°+ AVW. must be chosen sufficiently large so that the first term

in Eq. (36) is negligibly small, The upper limit, v°+ AVW“, must be

congistent with the restriction that ‘I'V =cos0’' for all ¥, Clearly the

basic relation given in Eq. (26) can only hold provided T .

T, =cosl’ * Trmax
where Tmax is the highest temperature of the system, i.e., the value of
Aku is determined by the expression

u o 3 4
av) BT . L, KT 2’"

~ max [+] 50
5 | A5 T cosd |Rv-E;| | - (50)
) oo o 4/

rBVO(TO) may be neglected ordinarily unless T = constant or cos@' = 0,



-33.

Hence Eq. (49) becomes

vo+Avw 3
hv -E, \2
o 24 2 0o 4
2 f B, (TTV =cos°')dv = 5?2_ bo To _T_—) cosd'
v +bLv °
B(T )L kr 1212 3
x Y ' "max'"2 |- o__ R Avw (51)
:TobOCOIO' I'u—'o-El 50

From Eqs. (47) and (51) we may now determine the scaling
parameters for the steradiancy. Since Avc oe bo for a fixed ratio of the
second term (which has been neglected) relative to the first term in

Eq. (36)0 we find

v +0V
o c p
] (-]
BV(TTV =cou°')dv°ct,-l (52)
vo-Avc
and
u
v°+AVw
o u
2 f B, (TTV =co'°,)dv°: fo .‘/Lz for v << A Yo °

v
o+bv (53)

The result given in Eq. (53) is identical with the scaling
parameter obtained for the wings of isothermal collision-broadened lines.

This conclusion is consistent with Thomson's approximate considerations. 9

5

J.A.L. Thomson, Eighth International Combustion Symposium,
pPp. 69-81, Williams & Wilkins Co,, Baltimore, 1962.
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B. Isolated Spectral Lines Belonging to Diatomic Emitters with

Doppler Broadening

For Doppler-broadened lines, we find

1 5
2 o 2. T .2
“f;i—z Ayt Su(TPT_) — (ITRE) (—Ti) [l‘e"P(’“oTo/T]
LA (o) D,o
V-v T
X [l-exp(-th/kT)][exp(-Ez/kT)] exp[-(lnl) — _.r"_J (54)
D,o

where the Doppler half width under reference conditions is given by

ZkToan 1/2
bD.o =(——-—Z—mc v, -
From Eqs. (29) and (54) we find that
A+ 5 7
.- bD'o( . )Z(l)z exp(-hv_/kT) exp(Ej /KT)
% cos? wan/ To [l-exp(-h VO/kT]3 [l-exp(-uoTo/T)]
I' v-v, 2 T,
Do
[ -

where .4 is given by Eq. (32).

1. The Limiting Case hVO/kT << 1, uoTo/T << 1, (h"o'Ez )/KT << 1

Equation (55) becomes now
3
kT )
o
hv
o

We define the region near the line center by the condition that

o
I:’D.o

]
tluocow

R

T \Z voy \%T
ds Tri'ﬂ) (—%) expr(ﬂnZ)(-BS—?) %—:! dT.
o

L. ’
(56)

the exponential term may be replaced by unity. In this case
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(cos0')s = o [(T/To)n/z-lJ (57)

where )

*“‘bD’oTo( 1 \Z(kr

\3
wae 2 °
A" T T TR ||

]
/

When the exponent is sufficiently large, the following approxi-

mation may be used:

{(cos@') 8“ xp{(lnl) ¥ Z-‘ T l:(‘/Zexpr(ﬁtxZ) V-Vo z T°‘!
s = e [ . !
ool J \ To g ®po| T |
(58)
where 1
c Av / Z/ kT _\3 b 2
6” - 0 1 \) o ( D,o
u_a.lné ol wInl ke Vv
o1 | / } \ (]
2. The Limiting Case hvo/kT >> 1, uoTolT >>1
Integration of Eq. (55) yields the expression s
1 Z
o“b T 2 hwo E voy |2
SRS AP
L o° o D,o
r w
X|| -[ w'slze'wd\lv} (59)
Cow
o
where
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For w > 0, we may proceed as with the collision-broadened line and

the integral w
] - - .
1 = f w24y (60)

w
o

may be evaluated by using the methods of Section V, A(2).
Having assumed hvo/kTo >> 1, the frequency region for
w < 0 occurs far out in the line wings and contributes relatively little

to the total steradiancy.

3. Determination of Steradiancy B(0, 0) for hvo/kT >> 1, uoTO/T >> 1,

(hvo-El YT >> 1

The frequency dependence of ds/dT given in Eq. (59) does not
permit us to choose al(v) in such a way that a reduced distance-temperature
profile can be constructed. The difficulty is caused by the occurrence of
a product of frequency- and temperature-dependent terms in the exponent.

Near the line center, we may, however, calculate the radiant
flux since the integral IZ' is determined almost entirely by its upper
limitw_ . (corresponding to T=Tmax) provided that W in $2. This

property of the integral has been discussed in Section IV, A(2).

Introducing the additional restrictions

v.y |2 hv -E
g | dnz <« —prt
D,o o
and B (61)
Vv, 2 T,
—=| n2) <<,
D,o Tmax J
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Eq. (59) becomes

4 3 z
b T v2rhy -E
D,o o 1 v 1"
8= al(coﬂﬁ (w!nZ /J ( ETO ) IZ (62)
where
z
I'Z' = -f z°5/2 e %dz, z-= (hvo-EL)/kT.

@

and z is independent of + .

The inequalities in Eq. (61) become, for'typical‘fundamental
vibration-rotation bands of diatomic molecules,
Yoy \Z

-ro, << 30
D.o/

and )

\Z
o | max

1
e Yl «1,4 T .

D,o, o

/v-v

Hence, for large values of Tmax/To' the correct integral is obtained for
a frequency range that may be appreciably larger than bD.o' On the
other hand, for systems with small temperature gradienta, we have
obtained a temperature profile that is applicable only very close to the
line center.

For the temperature profile s(cos0')= L3Iz. we find, after

integrating over the frequency range Yo" AVD to 4‘°+AVD [compare

Eq. (47)] , that

v _+4AvV 3
o D 1 -
f B, (T )y = 2 AbD-°T° 1 |2 hvo-Ey ¢
(Y] T-V =C°.°' = L “[nz —-E-TT— (COIO') AVD.
vo-AVD 3 °

(63)
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In general, the integral represents only the contributions arising from
a narrow frequency range near the line center. Since it is reasonable
to assume that A‘UD is proportional to bD o’ the radiancy for this

»

frequency range near the line center is inversely proportional to foLS'

C. Gray Body

With
k,(T) = k = constant,

integration of Eq. (29) leads to the expression

3
W1 2hv 1 1
sleosdl) = — = pr(hv/k")"'r T expReRT, T | (64)
1

e

In certain regions of frequency and temperature, Eq. (64)

reduces to a universal relation between s and T.

1. The Special Case h#/kT < hv/kTo << 1

Equation (64) now reduces to

2
s(cos0r) = EE% (T T ). (65)
alkc
Hence, for -
s(cos0') = L (T-To). (66)

Eqs. (44) and (45) lead to

2 2
_ o 2k 3 3
f By(on 0)dv = j By (To)d‘V+ -S—EET (Vz -Vl Hcos@'), (67)
c
Vl 1/1
‘Vz .
and, if T >> T, then f B,,(0,0)dv (foi: )"": the scaling parameter
V
1

is foi .
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2. The Special Case hv/kTo>> 1, he/kT<< |

In Eq. (65), T replaces (T-To) and the preceding results apply.

3. The Special Case hv/kTo >>1, hv/kT>> 1

In this case there is no s-T curve which is independent of v ,

-

VI. RADIATIVE SCALING PROPERTIES FOR REPFESENTATIVE
TEMPERATURE PROFILES

The integral expression of Sec. I. C, for the spectral
steradiancy B, is the formal solution to the linear, first-order

differential equation

dB,, o

—5 =Lk, (B -B, ) (68)

ds
 J

where s = l/Lo. is the distance along the line of sight, and L, is a
characteristic length of the system. Equation (68) has been integrated
numerically by means of a fourth order Runga-Kutta method for
representative temperature profiles., The temperature profiles are
represented by the expressions

*
T x-'ro)(l.l- -|™) 4T, mel2,4. (69)

(Trma

The specified temperature profiles are sketched in Fig. 6.
The absorption coefficient k , is given by Egqs. (30) and (54)
for dispersion and Doppler -broadened line contours, respectively. The
]
spectral and total line steradiancies at s = 2 have been computed for a
typical strong line of the vibration-rotation spectrum of the hydrogen
fluoride molecule. We have chosen the values T°= 300°K and

Tm“- 3000°K. Representative results of the calculation are shown
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in Figs. 7, 8, and 9 for the R3(v=0, J=3 = v=1, J=4) line of HF, For this line

in case of dispersion broadening, b = .132p cm'l (p in atmos) whereas for

-1

Doppler-broadening we have used b°= 5.85 x 10'3 cm The reference optical

depth is defined as To= (Lo/ wb o)f kv. odv (kv. oF absorption coefficient evaluated

at To)' B is the spectral steradiancy at s*= 2, and B.. represents the

vV, s¥
integrated steradiancy at s*= 2 for the entire line.

Reference to Fig. 9 shows that Doppler and dispersion broadening
produce the same total steradiancy B" for the case under consideration for

large values of v provided that b » i.e., for

=~ 2b
o,dispersion o, Doppler
p™ 0.1 atm,

A. Dispersion-Broadened Line

Examination of Fig, 7 shows that the R3 line of HF retains a typical
dispersion contour until T, becomes greater than about 10, when self-reversal
becomes important, Hence " 10 may be said to define the upper limit of the
transparent gas regime. From Fig. 9 it is seen that the pressure and length

dependence of the steradiancy for T <10is

B.‘ « poLo' (70)
i. e., it is the same as for an isothermal transparent gas. In general, T= 10
corresponds to a small physical length for a strong spectral line, For the R3
line of HF, the value of Lo at T = 10 is about 0.015 cm.

The center of the line is essentially completely self-absorbed for

T 100, * Figure 9 shows that for T 3100

*The condition that B_, “(l",zl--c’)i for T_ exceeding the value required to make
the line center ''black’ may be used to Qerive an approximate relation for the
critical minimum value of T+ above which Eq, (71) applies for various tempera-
ture profiles [for details, s8e the Ph,D. thesis of M. Thomas, California
Institute of Technology, Pasadena, California, June 1964],
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By s*(10™"*watt/cm?) —e

Fig. 8. The spectral steradiancies B o* for m = 2 for the R3 line
of HF at a = 2 as a function of (v -V )/b for pure Doppler

broadening and various values of the reference optical’
depth ‘l’o.
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which is the same as for the Eddington-Barbier approximation or for
the isothermal case for large optical depths. For a strong line, the
transition to the regime described by Eq. (71) occurs at a small physical

length (= 0.15 ¢cm for R3 line of HF)

B. Doppler-Broadened Line

The plot in Fig. 8 shows that self-reversal for the Doppler-
broadened line becomes important for ’t"o x 5, However, reference to
Fig. 9 indicates that Eq. (70) remains valid up to ‘l’o ~ 10 which, at
p=0.1 atmos , corresponds to L x= 0.007 cm for the R3 line of HF. For
larger values of T'o, however, the Doppler-broadened line does not
approximate the behavior of the dispersion-broadened line, i.e., B does
not become simply proportional to a power of L, Rather, B.‘ becomes a
weaker and weaker function of To as saturation is approached.

The more complicated behavior of the Doppler -broadened line
compared to the dispersion broadened line is the result of the fact that
the Doppler line half-width increases with temperature while the dispersion
line half-width decreases with temperature at constant pressure. Hence,
viewing a Doppler -broadened system at l‘=2, the radiation emitted from

the higher temperature regions is ""seen' at all optical depths since this

radiation is not extensively reabsorbed.



